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Abstract—Methods of  fuzzy differential equations are extending to include Variation of Parameters formula, Existence and Uniqueness criteria for 
Three point Boundary Value Problems. Incidentally, we prove existence and uniqueness criteria for Initial Value Problems On fuzzy differential equations. 

Index Terms— Differentiable mapping, Lipchitz condition, Fuzzy Boundary Value Problem, Green’s matrix. 
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1 INTRODUCTION 

  In recent years the theory of Fuzzy Differential Equations 
got more attention because this theory represents the 
natural way of modeling the dynamical systems under 
uncertainty. Green’s function plays a vital role in solving 
Boundary Value Problems of fuzzy differential equations. 

 in this paper we consider  a system of first order 
in-homogeneous  differential equation 

𝑦′(𝑡) = 𝐴(𝑡)𝑦(𝑡) + 𝑓(𝑡),    𝑦(𝑡0) = 𝑦0, (1.1)  

where  y  is n- dimensional fuzzy vector, A is an n × n 
vector  valued function. The concept of fuzzy derivative 
was first introduced by Chang and Zadhe [2]. Initially the 
derivative of fuzzy valued mapping was developed by Puri 
and Ralescu [9], that generalized and extended the concept 
of Hukuhara differentiability (H-derivative) for set valued 
mappings. Using H-derivative, Kaleva [3] develop a theory 
for fuzzy differential equations. In order to provide a 
fundamental background, we refer to work of J.J. Nieto [6], 
and V.Lakshmikantham and R.N. Mohapatra [5]. In Kaleva 
[3] existence and uniqueness is developed under the 
Lipchitz condition. In [3] Lipchitz condition is replaced by 
more general condition and studied existence and 
uniqueness of initial value problems and established the 
global existence of solutions assuming local existence. 
Nonlinear Two Point Boundary Value Problems on Fuzzy 
Differential Equations, Lakshmikantham and K.N. Murty 
[4], in the year 2008 Minghochen and Wu [8] obtain 
Existence and Uniqueness  on Fuzzy Differential Equations 
gave an amendment to results of D.O’ Regan 
Lakshmikantham [7]. They proved boundary value 
problems on fuzzy differential equations can be obtained 
by the means of the theory of obstruct function in Banach 

Spaces. In fact they prove the two point boundary value 
problems on fuzzy differential equations to fuzzy integral 
equations and further prove same results about existence 
and uniqueness. However the theory is not extended to 
system of differential equations. 

 This paper presents several intricacies involved in 
understanding fuzziness in differential equations. In this 
paper we introduce the concept of H-differentiability of 
Puri and Relescu [9] and study the properties of 
differentiable mappings. In section 2, we recall some 
fundamental concepts of fuzzy numbers and derivatives In 
section3, we present the criteria for existence of the general 
solution of the homogeneous system  y′(t) = A(t)y(t) and 
then present variation of parameters in section 4, In section 
5, we discuss the existence and uniqueness criteria for 
three-point boundary value problem associated with the 
system of first order linear matrix differential equations. 

 2 PRELIMINARIES 

 The family of all non-empty compact convex 
subset of ℝn denoted by Pk(ℝn). 

For α, β ∈ ℝ and A, B ∈ Pk(ℝn), we define  

α(A + B) = αA + αB,   α(βA) = (αβ)A and 1. A = A, 

If α, β ≥ 0, then (α+ β)A = αA + βA. 

 Let T = [a, b] be a compact subinterval of  ℝ. 

Definition 21.  Let En = {u: ℝn → [0,1]} , u ∈ En is called 
fuzzy number if it satisfies the following four axioms. 
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   (i) u is normal, that is there exists an x0 ∈ ℝn such that 
u(x0) = 1. 

   (ii) u is fuzzy convex, that is for any x, y ∈ ℝn and 
0 < λ < 1, u(λx + (1− λ)y) ∈ ℝn. 

  (iii) u is upper semi continuous. 

  (iv) [u]α = {x ∈ ℝn: u(x) ≥ α}.  . 

 For 0 ≤ α ≤ 1, the α- level sets [u]α ∈ Pk(ℝn). 

We note that  [u]0 = {x ∈ ℝn: u(x) ≥ 0} is compact. 

Definition 2.2.  A fuzzy number in parametric form is 
represented by (uα−, uα+), where  

   uα− = min[u]α ,   uα+ = max[u]α  , 0 ≤ α ≤ 1   

   and has the following properties. 

  (i)  uα− is a bounded left-continuous monotone increasing 
function of α over [0,1] 

 (ii)  uα+  is bounded left- continuous monotone decreasing 
function of  α over [0,1] 

 (iii)  uα− ≤ uα+  , 0 ≤ α ≤ 1. 

 If  f:ℝn → ℝn is a function, then according to 
Zadeh’s extension principle, we can extend f: En × En → En 
by defining 

f(u, v)(z) = sup
z=f(x,y)

min(u(x), v(y))          and                     (2.1) 

it is well known that  

                      [f(u, v)]α = f([u]α, [v]α)               (2.2) 

For all u, v ∈ En, λ ∈ ℝ and 0 ≤ α ≤ 1, the sum u + v and the 
product λu are defined by  

[u + v]α = [u]α + [v]α 

[λu]α = λ[u]α 

where [u]α + [v]α means the usual addition of two intervals 
(subsets) of ℝn and λ[u]α means the usual product between 
a scalar and subset of ℝn. 

Definition 2.3.  We define D: En × En → ℝ+ ∪ {0} by 

D(u, v) = sup
0≤α≤1

dH( [u]α, [v]α), 

where  dH is the Hausdorf metric defined  in Pk(ℝn) 

i. e.  D(u, v) = sup
0≤α≤1

max{|uα−, vα−|, |uα+, vα+|}. 

It can easily verify that (En, D) is a complete metric space 
and that D has the following properties: 

For any u, v, w ∈ Pk(ℝn) and λ ∈ ℝ 

(i) D(u + w, v + w) = D(u, v) 

(ii) D(λu,λv) = |λ|D(u, v) 

(iii) D(u, v) ≤ D(u, w) + D(w, v). 

Definition 2.4.  Let x, y ∈ En. If there exists z ∈ En such that 
x = y + z, then z is called the  H-difference of x with respect 
of y and is denoted by x ⊝ y. 

3 DIFFERENTIATION AND INTEGRATION OF FUZZY      
NUMBER VALUE FUNCTIONS 

       Definition 3.1.  Let F: T → En. For t0 ∈ T, we say that F is 
differentiable at t0 (H- differentiable), if there exists an 
element  F′(t0) ∈ En such that for all h > 0, the H- difference 
F(t0 + h)⊝ F(t0), F(t0)⊝ F(t0 − h)  exists and the limits 
(in the metric D) 

lim
h→0+

F(t0 + h)⊝ F(t0)
h

,  lim
h→0+

F(t0)⊝ F(t0 − h)
h

 

are exists and each equals to F′(t0). 

At the end points of T, we only take one-sided derivative. 

Proposition 3.1. Let  f: T → En be continuous on T, the it is 
integrable on T. 

Proposition 3.2.  Let  f: T → En be integrable on  [a, b], a <
c < b, then f is integrable on [a, c] and [c, b]. 

𝑖. 𝑒.  �𝑓(𝑡)𝑑𝑡
𝑏

𝑎

=  �𝑓(𝑡)𝑑𝑡
𝑐

𝑎

+ �𝑓(𝑡)𝑑𝑡
𝑏

𝑐

. 

Proposition 3.3.  Let  f, g: T → En be integrable on 
T and α,β ∈ ℝ, then  

�(αf(t) + βg(t))dt
b

a

=  α� f(t)dt
b

a

+  β� g(t)dt
b

a

. 

 

Proposition 3.4.  If g(t) = ∫ f(t)dtt
t0

 is differentiable and 

g′(t) = f(t). Then  
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f(t)− f(t0) = � f ′
t

t0

(s)ds. 

 

Theorem 3.1.  Let F: T → E1 be differentiable. Denote 
Fα(t) = [fα(t), gα(t)] for α ∈ [0,1]. Then fα(t) and gα(t) are 
differentiable and 

[F′(t)]α = [fα′ , gα′ ]. 

Proof.  Clearly for any α ∈ [0,1], 

[F(t + h)− F(t)]α = [fα(t + h)− fα(t), gα(t + h)− gα(t)] 

and  

[F(t)− F(t − h)]α = [fα(t)− fα(t− h), gα(t)− gα(t− h)] 

  

lim
h→0+

�
F(t + h)− F(t)

h �
α

= lim
h→0+

�
fα(t + h)− fα(t)

h �
α

, lim
h→0+

�
gα(t + h)− gα(t)

h �
α

 

and 

 

lim
h→0+

�
F(t)− F(t − h)

h �
α

= lim
h→0+

�
fα(t)− fα(t− h)

h �
α

, lim
h→0+

�
gα(t)− gα(t− h)

h �
α

 

Hence  

[F′(t)]α = [fα′ , gα′ ]. 

The following theorems are immediate. 

Theorem 3.2. If F: T → En be differentiable at t, then it is 
continuous at t. 

Theorem 3.3. If F, G: T → En  are differentiable and λ ∈ ℝ, 
then  

(F + G)′(t) = F′(t) + G′(t) 

and 

(λF)′(t) = λF′(t). 

Theorem 3.4.  Let F: T → En  be continuous. Then for all 
t ∈ T ,  

 G(t)  = ∫ Fta  is differentiable and G′ (t) = F(t).  

Fuzzy differential equations 

Definition 3.3.  Let α > 0  and f: T × En → En be continuous, 
we say that f satisfies a Lipchitz condition with the Lipchitz 
constant    K > 0, if for any ( t, x ), ( t, y) ∈ T × En,   

                      D (f (t, x), f(t, y) ) ≤ K D(x, y)             (3.1)                                 

Lemma 3.1.  ∅ ∶ T →  En is a solution of the initial value 
problem 

                      x′ = f(t, x) , x(t0) =  x0                           (3.2) 

if and only if it is a solution of the integral equation  

x(t) =  x0 +  � f(s, x(s))
t0

t
 ds 

 for all t ∈ T and t > t0. 

Theorem 3.5.   Let f: T × En  →  En be continuous and 
assume that of satisfies a Lipchitz condition (3.1) with the 
Lipchitz constant K > 0 .   Then the initial value problem 
(3.2) has one and only one solution on  T.  

Proof.    For any  ∅ ,ψ ϵ C(J, En), define  

                          H(∅,ψ) =  supt ϵ J  D ( ∅(t),ψ(t) ) 

Since ( En  , D ) is a complete metric space it follows that 
C( J, En ) is a complete metric space. 

Now let  ( t , y1  )  ∈ T × En  and  η > 0 be such that 
 ηk < 1. 

Then consider 

                      T ∅ ( t ) =  y1 +  ∫ f (t
t1

 s,∅(s)) ds  

Using the fact that f  satisfy a Lipchitz condition ,  

We have 

H ( T∅, Tψ ) =  supt ∈ J D �� f ( s,∅
t

t1
(s)ds ,� f (s,ψ(s) ds

t

t1
� 

                                                                
≤  ∫ D �f�s,∅(s)�,   f( s,ψ (s) �t1 +η

t1  ds  

    ≤ ∫ k D�∅(s), ψ(s)�t1 +η
t1  ds  

                  ≤ η K H (∅,ψ).  
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for all ∅ ,ψ ∈ C[ J , En].  Hence by the Generalized 
contraction mapping theorem  T has a unique fixed point 
wherever ηk < 1 ,  which is in fact the desired solution of 
the initial value problem . 

 

4  VARIATION OF PARAMETERS FORMULA  

         We now our attention to the linear system  

x′ = A(t)x + f(t)  

where  A, f: T →  E′  are continuous. If 
Aα(t) =  [a1α (t),   a2α (t)] 

and    [x]α =  [x1α , x2α],  then 

[A(t)x]α  
=  �mint∈[a,b](a1α(t)x1  , a2α(t)x2 , a2α (t)x2α , a2α (t)x2α) ,
      maxt∈[a,b](a1α(t)x1  , a2α(t)x2 , a2α (t)x2α , a2α (t)x2α) � 

Since the components of Aα(t) are continuous on a closed 
interval, they are bounded on T and hence there exists a 
constant K > 0 such that D(Aα(t)x , 0) ≤ KD(x(t), 0).  

By the uniqueness of initial value problems, the initial 
value problem 

y′ = A (t)y + f(t),      y(t0 ) =  y0 

has unique solution on T. 

We use the following notations:  

Consider     y′ = A (t)y + f(t)             

Where y = ( y1 ,y2 , … yn )    and each yi ∈ En and hence 
y ∈ Enn, 

Define  for each  α ∈  [0,1] 

                  u1 
α  =   [a11 u1 + a1 2, u2 + … + a1n un]α  

                      = supt∈(0,1) [a11[u1]α + a12[u2]α +  … a1n[un]α] 

and  D(x, y) =  [d(x1y1 ), d(x2y2 ), … , d(xny n)] as generalize 
metric. 

Note that the system given order non-homogeneous fuzzy 
differential equation 

                 y′ = A(t)y + f(x)            (4.1) 

is equivalent to the following system of first order  non-
homogeneous fuzzy differential equations 

           (yα−)′ = Ayα−(t) + fα−(t)                           (4.2) 

           (yα+)′ = Ayα+(t) + fα+(t)                                          (4.3) 

Where                 yα±(t) =  �y1α
± (t), … , ynα± (t)�

T
and 

 fα±(t) =  �f1α
± (t), … , fnα± (t)�. 

The general solution of the homogeneous systems  

(yα−)′ (t) = Ayα−(t)  satisfying   yα−(t0) =  y0,α
−  

when A is a constant matrix can formally be expressed as  

yα−(t) = exp(−A(t− t0) ) y0,α
−  

and the general solution of  

  (yα+)′ (t) = Ayα+(t),  Satisfying   (yα+) (t0) = yα+(t)   is  

                                   yα+(t) = exp�−A(t −  t0 )� y0,α
+  . 

If  Y(t) is a fundamental matrix of   y′ = A(t)y , then any 
solution of Non-homogeneous equation (4.2) and (4.3) are 
given by  

 

          (yα−) (t) = Yα−(t) y0,α
− (t), + Yα−(t) ∫ Yα−(s) fα−

t
0 (s) ds  (4.4) 

and               
          (yα+) (t) = Yα+(t) y0,α

+  + Yα+(t) ∫ Yα+(s) fα+
t
0 (s) ds     (4.5) 

5  EXISTENCE AND UNIQUENESS 

In this section, we consider the general boundary value 
problem 

                 y′(t) = A(t)y + f(t) ,   a ≤ t ≤ c  

          My(a) +  Ny(b) +  Ry(c) = 0   (a < b < c)      (5.1)                            

Where M, N and R are constant square matrices of order ‘n 
‘and all scalars are assumed to be real. 

The boundary value problem ( 5.1)  is equivalent  to the 
following system of fuzzy boundary value problems for 
α ∈ [0,1] and for every t ∈ T.  

 
            (yα−) ′(t) = Ayα−(t) + fα−(t)  
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                Myα−(a) + Nyα−(b) +  Ryα−(c) = 0                (5.2)                         

   and  

            (yα+)′ (t) = Ayα+(t) + fα+(t) 

           Myα+(a) + Nyα+(b) + + Ryα+(c) = 0                   (5.3)                

Definition 5.1.  If   (Yα±) (t) is a fundamental matrix solution 
of     (yα±)′ (t)  = A(t) (yα±) (t),  

then the matrix  D defined by  

       Dα
± = MYα±(a) + NYα±(b) + RYα±(c) 

is called characteristic matrices for the boundary value 
problem 

Definition 5.2.  A boundary value problem is said to be 
incompatible, if its index of compatibility is zero. 

    i.e.                  Dα
− = MYα−(a) + NYα−(b) + RYα−(c) 

    and                  Dα
+ = MYα+(a) + NYα+(b) + RYα+(c) 

are Non-singular. 

Theorem 5.1.  The boundary value problem 

                      (yα−) ′(t) = Ayα−(t) + fα−(t)  

                        Myα−(a) + Nyα−(b) +  Ryα−(c) = 0                                        
and        

                      (yα+)′ (t) = Ayα+(t) + fα+(t) 

                                      Myα+(a) + Nyα+(b) + + Ryα+(c) = 0           

has unique solution, which is             

yα−(t) =  � Gα
−

c

a
(t, s)fα−(s) ds 

and 

yα+(t) =  � Gα
+

c

a
(t, s)fα+(s) ds 

    where Gα
±(t, s) are the green’s matrices for the 

homogeneous boundary value problem 

(yα±)′ = A(t) yα±(t) 

Proof: 

Substituting the general form of  yα−  and yα+   as given (4.4) 
and (4.5) in the boundary condition matrices of ( 5.2 ) and  ( 
5.3 ) respectively, we get 

[ MYα−(a) + NYα−(b) + RYα−(c) ]y0,α 
− +

NYα−(b)∫  (Yα−)−1 b
a (s)fα−(s) ds +

RYα−(c)∫  (Yα−)−1 c
a (s)fα−(s) ds = 0  

and   

[ MYα+(a) + NYα+(b) + RYα+(c) ]y0 ,α 
+  

     +NYα+(b)∫  (Yα+)−1 b
a  (s)fα+(s) ds +

RYα+(c)∫  (yα+)−1 c
a  (s)fα+(s) ds = 0  

y0,α
− (α) = −(Dα 

− )−1  �NYα−(b)� (Yα−)−1
b

a
(s)fα−ds

+ RYα−(c)� (Yα−)−1
c

a
(s)fα−(s)ds� 

and 

y0,α
+ (α) = −(Dα 

+ )−1  �NYα+(b)� (Yα+)−1
b

a
(s)fα+ds

+ RYα+(c)� (Yα+)−1
c

a
(s)fα+(s)ds� 

Substituting    y0,α
±   in the general form we get 

yα−(t) = Yα 
−(t)  ∫ (Yα−)−1t

a (s)fα−(s)ds  

−Yα−(t) (Dα 
− )−1 �NYα−(b)� (Yα−)−1

b

a
(s)fα−ds

+ RYα−(c)� (Yα−)−1
c

a
(s)fα−(s)ds� 

and 

yα+(t) = Yα 
+(t)  ∫ (Yα+)−1t

a (s)fα+(s)ds  

−Yα+(t) (Dα 
+ )−1 �NYα+(b)� (Yα+)−1

b

a
(s)fα+ds

+ RYα+(c)� (Yα+)−1
c

a
(s)fα+(s)ds� 

It can be written as   

yα−(t) =  � Gα
−

c

a
(t, s)fα−(s) ds 

and 

yα+(t) =  � Gα
+

c

a
(t, s)fα+(s) ds 
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where Gα
±(t, s) are the green’s matrices for the 

homogeneous boundary value problem 

  (yα±)′ = A(t) yα±(t) 

Satisfying the boundary condition matrix 

                       Myα±(a) + Nyα±(b) + Ryα±(c) =  0 

and is given by 

 

   Gα
−(t, s)

 t ∈ [a, b]  

=

⎩
⎪
⎨

⎪
⎧

Yα−(t)(Dα 
− )−1 MYα−(a)(Yα 

−)−1 (s),                                     
                                      a < s < t ≤ b < c

−Yα−(t)(Dα 
− )−1 [NYα−(b) + RYα−(c)](Yα 

−)−1 (s),                
                                       a ≤ t < s < b < c

−Yα−(t)(Dα 
− )−1 RYα−(c)(Yα 

−)−1 (s),                                            
                                       a < t < b < s < c.

 

Gα
−(t, s)

t ∈ [b, c]

=

⎩
⎪⎪
⎨

⎪⎪
⎧
−Yα−(t)(Dα 

− )−1 RYα−(c)(Yα 
−)−1 (s),                        

                                     a < b < t < s < c
Yα−(t)(Dα 

− )−1 [MYα−(a) + NYα−(b)](Yα 
−)−1 (s),     

                                         a < b < s < t ≤ c

Yα−(t)(Dα 
− )−1 MYα−(a)(Yα 

−)−1 (s),                           
                                     a < s < b ≤ t < c.

                                  

and 
Gα
+(t, s)

 t ∈ [a, b] =

⎩
⎪
⎨

⎪
⎧

Yα+(t)(Dα 
+ )−1 MYα+(a)(Yα 

+)−1 (s),                                               
                                      a < s < t ≤ b < c

 −Yα+(t)(Dα 
+ )−1 [NYα+(b) + RYα+(c)](Yα 

+)−1 (s),                    
                                       a ≤ t < s < b < c

−Yα+(t)(Dα 
+ )−1 RYα+(c)(Yα 

+)−1 (s),                                            
                                       a < t < b < s < c.

 

 

Gα
+(t, s)

t ∈ [b, c]

=

⎩
⎪⎪
⎨

⎪⎪
⎧
−Yα+(t)(Dα 

+ )−1 RYα+(c)(Yα 
+)−1 (s),                        

                                     a < b < t < s < c
Yα+(t)(Dα 

+ )−1 [MYα+(a) + NYα+(b)](Yα 
+)−1 (s),     

                                         a < b < s < t ≤ c

Yα+(t)(Dα 
+ )−1 MYα+(a)(Yα 

+)−1 (s),                           
                                     a < s < b ≤ t < c.

                                  

Theorem 5.2.  Green matrix  Gα
±(t, s) has been following 

properties: 

        (i)   The components of Gα
±(t, s ) regarded as a  

foundation ′t′ for a fixed ′s′ is  continuous  on 
 [𝑎, 𝑠) and (s, b] . At the point  t = s , Gα

± has an upward jump  

    discontinuity of  unit magnitude  .  

              i.e. [Gα
±(s+, s )− Gα

±(s−, s )] = In 

     (ii)   Gα
± is a formal solution of the homogeneous 

boundary value problems , it fails  to be a true solution 
become of the discontinuity at t = s.                  

      (iii)  Gα
± is a unique n × n matrix with properties (i) & (ii) 

     Proof :  we prove the properties in the following cases.            
The other case follows similar 

Suppose s ∈ [a, b]  

Gα
±(s+, s )− G,α

± (s−, s ) =  Yα±(s)(Dα 
± )−1 MYα±(a) (Yα 

±)−1 (s)              

+Yα±(s) (Dα 
± )−1 [NYα±(b) + RYα±(c)](Yα 

±)−1 (s)   

                                       = Yα±(s)(Dα 
± )−1 [MYα±(a) + NYα±(b) +

RYα±(c)](Yα 
±)−1 (s)   

                                       = Yα±(s)(Dα 
± )−1 Dα 

±  (Yα 
±)−1 (s) 

                                            =  In 

Hence property ( i ) proved . 

To prove the property ( i i ),  consider    

MGα
±(a, s) + NGα

±(b, s) + RGα
±(c, s)  

     =  −MYα±(a)(Dα 
± )−1 [NYα±(b) + RYα±(c)](Yα 

±)−1 (s)  

+N[Yα±(b)− Yα±(b)(Dα 
± )−1 NYα±(b)

− Yα±(b)(Dα 
± )−1 RYα±(c)](Yα 

±)−1 (s) 

+ R[Yα±(c)− Yα±(c)(Dα 
± )−1 NYα±(b)

− Yα±(c)(Dα 
± )−1 RYα±(c)](Yα 

±)−1 (s) 

    = −[MYα±(a) + NYα±(b) + RYα±(c)] (Dα 
± )−1 NYα±(b)Yα±(s)   

        −[MYα±(a) + NYα±(b) + RYα±(c)] (Dα 
± )−1 RYα±(c)Yα±(s)  

         + NYα±(b)(yα 
± )−1 (s) +  RYα±(c)(Yα 

±)−1 (s)  

  = 0.   

Hence  property ( ii) is proved.   

finally , any solution of the non-homogeneous system  

y′  = A(t)y + f(t),           a ≤ t ≤ c 
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My(a) + Ny(b) + Ry(c) = 0 

is given by     

y(t) = � G(t, s)f(s)ds 
c

a
 

where 

yα(t) =  � Gα(t, s)fα(s)ds 
c

a
 

and 

y(t) =  � �y1,α
− (t), y1,α

+ (t)�
α∈(0,1)

… � �yn,α
− (t), yn,α

+ (t)�
α∈(0,1)

 

where 

yi,α(t) =  � Gi,α(t, s)fα(s)ds .
c

a
 

n-Point Boundary Value problem: 

In this section we write the Green’s matrix for n- point 
boundary value problem. Consider n-Point Boundary 
Value problem 

y′ = A (t)y + f(t),      x1 ≤ t ≤ xn  

M1 y(x1) +  … + Mn y(xn) =   0, (x1 < x2 < ⋯  < xn) 

Where M1, M2 … , Mn  are constant square matrices of order 
n. The above system is equivalent to following fuzzy 
boundary value problem for α ∈ [0,1] and for every t ∈ T.  

  
                 (yα−) ′(t) = A(t)yα−(t) + fα−(t)  

M1 yα−(x1) + M2 yα−(x2) + … + Mnyα−(xn) =   0  (5.4)                                    
 (yα+)′ (t) = Ayα+(t) + fα+(t) 

            M1 yα+(x1) + M2 yα+(x2) + … + Mnyα+(xn) =   0     (5.5)          

The solution of the above system is 

yα−(t) =  � Gα
−

xn

x1
(t, s)fα−(s) ds 

and 

yα+(t) =  � Gα
+

xn

x1
(t, s)fα+(s) ds. 

where Gα
±(t, s) are the green’s matrices for the 

homogeneous boundary value problem 

  (yα±)′ = A(t) yα±(t) 

Satisfying the boundary condition matrix 

    M1 yα±(x1) + M2 yα±(x2) + … + Mnyα±(xn) =   0  

and is given by  

Gα
±(t, s)

t ∈ [x1, x2]

=

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ Yα±(t)(Dα 

± )−1 M1Yα±(x1)(Yα 
±)−1 (s),                                                       

                           x1 < s < t ≤ x2 < x3 < ⋯ < xn
−Yα±(t)(Dα 

± )−1 [M2Yα±(x2) + ⋯+ MnYα±(xn)](Yα 
±)−1 (s),                

                                                      x1 ≤ t < s < x2 < x3 < ⋯ < xn
−Yα±(t)(Dα 

± )−1 [M3Yα±(x3) +⋯+ MnYα±(xn)](Yα 
±)−1 (s),                 

                                                            x1 < t < x2 < s < x3 < ⋯ < xn .
.   .  .  .
.  .  .  .
.  .  .  .

−Yα±(t)(Dα 
± )−1 MnYα±(xn)(Yα 

±)−1 (s),                                                       
                                            x1 < t < x2 < x3 < ⋯ < xn−1 < s < xn

 

Gα
±(t, s)

t ∈ [x2, x3]

=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ Yα±(t)(Dα 

± )−1 [M1Yα±(x1) + M2Yα±(x2)](Yα 
±)−1 (s),                          

                                                             x1 < x2 < s < t ≤ x3 < ⋯ < xn
−Yα±(t)(Dα 

± )−1 [M3Yα±(x3) +⋯+ MnYα±(xn)](Yα 
±)−1 (s),               

                                                              x1 < x2 ≤ t < s < x3 < ⋯ < xn
−Yα±(t)(Dα 

± )−1 [M4Yα±(x2) + ⋯+ MnYα±(xn)](Yα 
±)−1 (s),                

                                                     x1 < x2 < t < x3 < s < x4 < ⋯ < xn.
.   .  .  .
.  .  .  .
.  .  .  .

−Yα±(t)(Dα 
± )−1 MnYα±(xn)(Yα 

±)−1 (s),                                                       
                                               x1 < x2 < t < x3 < ⋯ < xn−1 < s < xn

Yα±(t)(Dα 
± )−1 M1Yα±(x1)(Yα 

±)−1 (s),                                                    
                                               x1 < s < x2 < t < x3 < ⋯ < xn−1 < xn

 

Gα
±(t, s)

t ∈ [xn−1, xn]

=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ Yα±(t)(Dα 

± )−1 [M1Yα±(x1) + ⋯+ Mn−1Yα±(xn−1)](Yα 
±)−1 (s),       

                                                  x1 < x2 < ⋯ < xn−1 < s < t ≤ xn
−Yα±(t)(Dα 

± )−1 MnYα±(xn)(Yα 
±)−1 (s),                                              

                                                    x1 < x2 < ⋯ < xn−1 ≤ t < s < xn
Yα±(t)(Dα 

± )−1 [M1Yα±(x1) +⋯+ Mn−2Yα±(x2)](Yα 
±)−1 (s),          

                                             x1 < x2 < ⋯ xn−2 < s < xn−1 < t < xn
.   .  .  .

.   .  .  .

.   .  .  .

Yα±(t)(Dα 
± )−1 M1Yα±(x1)(Yα 

±)−1 (s),                                                   
                                                            x1 < s < x2 < ⋯ xn−1 < t < xn
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